手撕HashMap

数据结构

位桶 + 链表 + 红黑树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
//Node是单向链表,它实现了Map.Entry接口
static class Node<k,v> implements Map.Entry<k,v> {
final int hash;
final K key;
V value;
Node<k,v> next;
//构造函数Hash值 键 值 下一个节点
Node(int hash, K key, V value, Node<k,v> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}

public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + = + value; }

public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}

public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
//判断两个node是否相等,若key和value都相等,返回true。可以与自身比较为true
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<!--?,?--> e = (Map.Entry<!--?,?-->)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
1
transient Node<k,v>[] table;//存储位桶的数组。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//红黑树
static final class TreeNode<k,v> extends LinkedHashMap.LinkedHashMapEntry<K,V> {//LinkedHashMap.LinkedHashMapEntry<K,V> 继承 Node<K,V>
TreeNode<k,v> parent; // 父节点
TreeNode<k,v> left; //左子树
TreeNode<k,v> right;//右子树
TreeNode<k,v> prev; // needed to unlink next upon deletion
boolean red; //颜色属性
TreeNode(int hash, K key, V val, Node<k,v> next) {
super(hash, key, val, next);
}

//返回当前节点的根节点
final TreeNode<k,v> root() {
for (TreeNode<k,v> r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}

工作机制

hashMap
Bucket为Hash值相同的元素集合。通过Hash函数计算出元素放置位置。若无冲突直接插入。有冲突则当桶的上的结点数大于TREEIFY_THRESHOLD时且table中结点数目大于MIN_TREEIFY_CAPACITY会转成红黑树。当桶上的结点数小于UNTREEIFY_THRESHOLD时树转链表。再插入结点。 数据结构转换时,是以table中hash函数所在的第一个节点开始转换。

成员变量

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
// 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的填充因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当桶(bucket)上的结点数大于这个值时会转成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 当桶(bucket)上的结点数小于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 桶中结构转化为红黑树对应的table的最小大小
static final int MIN_TREEIFY_CAPACITY = 64;
// 存储元素的数组,总是2的幂次倍
transient Node<k,v>[] table;
// 存放具体元素的集
transient Set<map.entry<k,v>> entrySet;
// 存放元素的个数,注意这个不等于数组的长度。
transient int size;
// 每次扩容和更改map结构的计数器
transient int modCount;
// 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
int threshold;
// 填充因子
final float loadFactor;
}

构造函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
public HashMap(int initialCapacity, float loadFactor) {
// 初始容量不能小于0,否则报错
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
// 初始容量不能大于最大值,否则为最大值
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 填充因子不能小于或等于0,不能为非数字
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// 初始化填充因子
this.loadFactor = loadFactor;
// 初始化threshold大小
this.threshold = tableSizeFor(initialCapacity);
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

//构造函数3
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

//构造函数4用m的元素初始化散列映射
public HashMap(Map<!--? extends K, ? extends V--> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}

tableSizeFor(initialCapacity)返回大于等于initialCapacity的最小的二次幂数值。如capacity为9.返回16.

1
2
3
4
5
6
7
8
9
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;//>>> 操作符表示无符号右移,高位取0。
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

重要成员函数

1
2
3
4
5
6
 static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
//获取key对应所在tab的位置
i = (n - 1) & hash(key)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public V get(Object key) {
Node<k,v> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}


final Node<k,v> getNode(int hash, Object key) {
Node<k,v>[] tab; Node<k,v> first, e; int n; K k;
//hash & (length-1)得到对象的保存位
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
//如果第一个节点是TreeNode,说明采用的是数组+红黑树结构处理冲突
//遍历红黑树,得到节点值
if (first instanceof TreeNode)
return ((TreeNode<k,v>)first).getTreeNode(hash, key);
//链表结构处理
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
   public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
/* putVal
1判断键值对数组tab[]是否为空或为null,否则resize();

2根据键值key计算hash值得到插入的数组索引i,如果tab[i]==null,直接新建节点添加,否则转入3

3判断当前数组中处理hash冲突的方式为链表还是红黑树(check第一个节点类型即可),分别处理。
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<k,v>[] tab; Node<k,v> p; int n, i;
//如果tab为空或长度为0,则分配内存resize()
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//(n - 1) & hash找到put位置,如果为空,则直接put
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<k,v> e; K k;
//第一节节点hash值同,且key值与插入key相同
if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)//属于红黑树处理冲突
e = ((TreeNode<k,v>)p).putTreeVal(this, tab, hash, key, value);
else {
//链表处理冲突
for (int binCount = 0; ; ++binCount) {
//p第一次指向表头,以后依次后移
if ((e = p.next) == null) {
//e为空,表示已到表尾也没有找到key值相同节点,则新建节点
p.next = newNode(hash, key, value, null);
//新增节点后如果节点个数到达阈值,则将链表转换为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//容许null==null
if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;//更新p指向下一个节点
}
}
//更新hash值和key值均相同的节点Value值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}

resize分为两步:(oldCap:原数组长度, newCap:新数组长度)

  1. 将newTable扩充为两倍的table
  2. 重新计算index,把节点再放到新的bucket中
    之所以重新计算index,是因为数组长度变化可能导致元素的所在index变化
    若仅有一个节点,则index = e.hash & (newCap - 1);
    若多于一个节点,以链表为例,
    获取每个bucket中的节点e, 判断(e.hash & oldCap) == 0,是的话则放置在原索引位置 j ,否则放置到 j + oldCap;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
final Node<K,V>[] resize() {
// 当前table保存
Node<K,V>[] oldTab = table;
// 保存table大小
int oldCap = (oldTab == null) ? 0 : oldTab.length;
// 保存当前阈值
int oldThr = threshold;
int newCap, newThr = 0;
// 之前table大小大于0
if (oldCap > 0) {
// 之前table大于最大容量
if (oldCap >= MAXIMUM_CAPACITY) {
// 阈值为最大整形
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 容量翻倍,使用左移,效率更高
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
// 阈值翻倍
newThr = oldThr << 1; // double threshold
}
// 之前阈值大于0
else if (oldThr > 0)
newCap = oldThr;
// oldCap = 0并且oldThr = 0,使用缺省值(如使用HashMap()构造函数,之后再插入一个元素会调用resize函数,会进入这一步)
else {
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 新阈值为0
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 初始化table
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 之前的table已经初始化过
if (oldTab != null) {
// 复制元素,重新进行hash
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
// 将同一桶中的元素根据(e.hash & oldCap)是否为0进行分割,分成两个不同的链表,完成rehash
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
文章目录
  1. 1. 数据结构
    1. 1.1. 位桶 + 链表 + 红黑树
  2. 2. 工作机制
  3. 3. 成员变量
  4. 4. 构造函数
  5. 5. 重要成员函数
|