LRU

Problem description

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.Could you do both operations in O(1) time complexity?

Examples

1
2
3
4
5
6
7
8
9
10
11
12
Example 1:
LRUCache cache = new LRUCache( 2 /* capacity */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4

Solution

  一开始选取HashMap,但因为HashMap无序只能放弃。最终选取了LinkedHashMap,但在使用过程中,无法remove指定index元素。差点手写。幸而搜到了LInkedHashMap的一个构造函数可以实现LRU。还需要重写removeEldestEntry方法,LInkedHashMap在添加元素后会调用removeEldestEntry方法检查是否需要移出最久未使用元素。

1
2
3
4
public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {//accessOrder:true采取LRU淘汰算法
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}

Code

LRUCache {
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

LinkedHashMap mCacheMap;
int mCapacity;
public LRUCache(int capacity) {
mCapacity = capacity;
mCacheMap = new LinkedHashMap(capacity, 0.75F, true){
@Override
protected boolean removeEldestEntry(Map.Entry eldest) {
if (mCapacity + 1 == mCacheMap.size()) {
return true;
}
return false;
}
};
}

public int get(int key) {
if (mCacheMap.containsKey(key)) {
return (int) mCacheMap.get(key);
}
return -1;
}

public void put(int key, int value) {
mCacheMap.put(key, value);
}
}
文章目录
  1. 1. Problem description
    1. 1.1. Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.Could you do both operations in O(1) time complexity?
  2. 2. Examples
  3. 3. Solution
  4. 4. Code
|